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ABSTRACT 

A problem in the degeneration of a compact, two-sheeted, Riemann surface of 
genus 2 is studied, using theta function techniques. The three moveable branch 
points coalesce to the fourth branch point on the first limiting surface while 
the triangles formed by these points are all essentially similar. Applying a con- 
formal map, we see that these points represent the finite branch points on the 
second of the limiting surfaces. 

1. Introduction 

In this paper we study the degeneration of a compact Riemann surface of  

genus 2. We take a specific concrete two-sheeted realization of the surface with 

a particular homology basis. The surface is then split according to a given 

prescription (see section 4). We obtain the beautiful result that the three branch 

points (see section 3) coalesce and also the fact, that as they come together, the 

triangles they form are all essentially similar. 

In genus one, there are classical results concerning the relationship between 

the fundamental domains of the ).-plane under the group, G().), of  the six Moebius 

transformations of the 2-plane onto itself, and the Siegel upper half-plane, ~1 ,  

under the group of fractional linear transformations, 

az+b l d c  I z - ~ - -  a ,b ,c ,  d integers  and det = + 1 .  cz+d'  b a 

The classical result states that the relationship between the ). and z planes 

is given by the fact that the fundamental domain of the modular group is mapped 

1-1 conformally, except for vertices, onto the fundamental domain of G(2) (see [5]). 
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The present paper is the result of an exploration into the extension to genus 

two of the results known in genus one. What is found here is a relationship between 

a boundary point, of points corresponding to Riemann surfaces, in the Siegel 

upper half-plane 62 ,  and points in C a , where each copy of C is slit from - 

to 0 and from 1 to oo. 

We obtain results about the degeneration of a specific Riemann surface by 

defining the degeneration in terms of the degeneration of a period matrix. In [2] 
a prescription was given to define a "splitting of the surface", and results were 

obtained concerning the period matrix of the degenerating surface. Both surfaces 

were "seen" before the degeneration given in [2]. In this paper we apparently 

see the first Riemann surface and not the second. By means of a conformal map 

we are able to view the degeneration in such a way that we see the second surface 

rather than the first (see section 5). 

2. 

DEFINITION 1. A g-characteristic (g an integer > 1) is a 2 x g matrix of 

integers , ] ,  where e = (el,e2,-..,eg) and e' = (e~,e~,...,e~). The characteristic 

is said to be even or odd depending on whether • ~= 1 ei.~ is even or odd. A re- 

duced g-characteristic has only O's and l 's  as its entries. A reduced g-character- 

istic is obtained from a given g-characteristic by replacing each entry by its 

least non-negative residue mod 2. A g-characteristic and its reduced represen- 

tative are even or odd together. 

DEFINITION 2. Let ( = ((1,'",(Q) be a complex g-vector and T = (tij) be a 

g x g symmetric matrix with positive definite imaginary part. The set of all 

such matrices is the generalized upper half-plane, ~g,  known as the Siegel upper 

half-plane of genus g.  The first order theta function with g-characteristic, [~,], 

is defined by the following series, which converges absolutely and uniformly on 

compact subsets of C" x ~g: 

REMARK. It is clear from the definition that the theta function splits when 

Tsplits into blocks along the major diagonal. 
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The theta constant with g-characteristic [ ~,] at T is 

0 [ 8 ]  ( 0 ' T ) ' e '  

Where no confusion can arise, we sometimes shorten the expression for the 

theta constant to 0[  e ] 8t ~ 

We state now some properties of the theta functions in the form of a series 

of lemmas. Proofs can be found in [1]. 

LEMMA 1. r h e f i r s t  order theta function 8' ( ( , r )  is an even or odd 
L J 

f u n c t i o n o f ( d e p e n d i n g  onwhether  [ 8 ] 8' is an even or odd characteristic. 

As an immediate consequence of Lemma 1, we have the fact that all theta 

constants with odd g-characteristics are zero. 

LEMMA 2. (Reduction formula).  I f  e = ~ + 2V and 8' = ~' + 2V' ,  where V 

and V' are integral g-vecters, then 

, (( ,T) = ( - 1 )  i=tZ 8ivi 0 ~, ( ( ,T) .  

DEFINITION 3. The period matrix of the theta functions with characteristics 

and matrix T is the g x 2g matrix (Io] T) whose left half is the g x g identity 

matrix I o and whose right half is T. A period is an integral linear combination of the 

columns of the period matrix, i.e., 

{~ I = #'~e (1) + .. .  + ffge~ + ~ 1 t ( 1 ) - [  - " ' "  - [ -  flgt (g), 

where e (~ and t (i) are the respective ith columns of Ig and T. Thus 

{;)( ) , = #'1 + ~ # i t u , ' " , # .  + l x i t g i  �9 
i 

DEFINITION 4. A half-period, ( ~ , ) ,  is literally half a period, i.e., 

LEMMA 3. 

(.<)1 
(Functional equation). 
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0[ JI ' e' ( + , , T = expni (ed~ i - e, il~i) - 2 . #i(i 

LE~MA 4. (Substitution formula). 

1 _ 1 _ . ~ l i ( i }  

Now let S be a compact Riemann surface of genus g and let ~ , . . . ,  ~o, ~1,'",  8g 

be a canonical homology basis for S. Let d~l, "",d(o be the normal basis of 

Abelian differentials of first kind on S with respect to the given homology basis, 

i.e., j'~ d(i=Su.  Then it is well known that the matrix n = (rri.~.), when nij = ~'6jd~i 

is an element of G o. 

DEFINITION 5. The Riemann theta function with characteristic le~ e' associated 
L J # - - 1 1  

with S, ,1 , ' " ,Y,  81,'",t$~ is 0 [e [  , ~, ((, n) and the associated Riemann theta con- 

stant is 0[~81 (0, n ) . ,  
k J 

We define a map of S C ~ by ~(P) (j'pPod~1, P P -~ = J'Po d~2, '",  SPo d~g) where Po 

is a fixed point (the base point) on S. This map may be extended to a map of 

divisors on S ~ C g by setting ((p~l... p~,) = ~l((p~ ) + ... + ~,((p~). By means 

of ((P) we may derive from the Riemann theta function, with any characteristic 

~, , associated with S a multivalued function on S. 

LEMMA 5. 0[ e ] e' (((P)' n) is either identically zero on S or else it has divisor 

of zeros P1 "'" Po such that 

for some period I ; , } ,  where K is a vector of constants depending o n  

~D. . . ,~a,~ , . . . ,8 ,  and Po. The vector K is called the vector of Riemann con- 

stants. 

3. 

Let S be a compact Riemann surface of genus 2. S always admits a represen- 
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ta t ion as the concrete Riemann  surface of  w 2 = P6(z) -- (z - zl)  (z - z2)..-  ( z -  z6) 

for  suitable zl ,  z 2 , ' " ,  z6. Fur thermore ,  we can normalize  so that  three o f  the six 

b ranch  points,  zi, are at  0, 1, and o0. The  equat ion takes the fo rm 

w 2 = z ( 1 -  z ) ( 1 - ) , l z )  ( 1 -  22 z) ( 1 - 2 a z ) ,  and the Riemann surface has a concrete 

realization as a tvvo-sheeted cover  of  the sphere with distinct b ranch  points over  

z = 0 ,  z = 1, z = 1/),l, z = 1/),2, Z = 1/),3, and z = o0. 

LEMMA 6. I f  a hyperelliptic Riemann surface is represented by the equation 

w 2 = z(1 - z) ( 1 - 2 1 z  ) ( 1 - 2 2 z )  ... (1 - ) ,20-1  z) 

so that it has distinct branch points over 0,1,1/) , j , . . . ,1 / ) ,2o_t ,  oo one may 

assume that its real branch points other than 0 and 1 (if  any) are all greater 

than one and in ascending order. 

PROOF. The  result is achieved by applying some auxiliary t ransformat ions .  

See [4]. 

With  L e m m a  6 in mind,  one may,  without  loss of  generality, assume that  the 

concrete realization of  S is as shown in Fig. 1. We then draw the part icular  

homology  basis shown in Fig. 1. Note  that  e is not  par t  o f  the homology  basis. 

3 / I 

. .  z . .  / 

Fig. 1. 

We will obtain the following: 

THEOREM 1. Let S be as described in Fig. 1. Then the branch points 1/2~, 

i = 1,2,3 are computed as the following quotients of products of Riemann 

1 

),1 

theta constants: 
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0~[~ 0 ~] ~0 ~ 0~[~ 0 ~] ~0~ 

~ o~[1 o ~] ~o,~ o~[1 o ~] ~o,~, ' 

1 __ 0 z [ ~ ]  (0, r0 0z[~ 01] (0, Z 0 

)-3 0z[~ ~] (0, r 0 01110 ~] (0, n) 

An important point is the observation that the differentials of first kind on S 

are linear combinations of dz/w and zdz/w. Hence every differential of first kind, 

in particular, d~2, d~z the normal differentials with respect to 72, 72,62, 62, change 

sign under sheet interchange (z, w) ~ (z, -w) .  Each basis cycle is homologous 

to a rectilinear path between appropriate pairs of branch points run through 

in one direction on one sheet of S and back on the other. One immediately 

deduces from these facts that the integral of the vector differential (d~2, d~z) 

between any two branch points is a half-period in the sense of Definition 4. 

We obtain Table I where we have taken 0 as the base point of the integrals. 

TABLE I 

~,0,~ [0 0 ~j 

[~ 00] where the path of integration is taken along the top sheet 
~(1) = on the top of the c u t O ~ l .  

~(~) [~0] ~-x = where we proceed from 1 on the top sheet to 1/22. 

~(~) = ['1 11] ~.ore ~e .ro~ee~ from,,~ on the to. s.eet on t . e t . o  ~ranc. out as ~e ~o to ~ ,~  ,eft of 

where we proceed on the top sheet from 1/)~ 2 to 1/23 . 

10 0 ] where we proceed along the top sheet on the top of the cut 
( (~)  = 0 from 1/23 to ~ .  



Vol. 12, 1 9 7 2  DEGENERATION OF A RIEMANN SURFACE 229 

We shall illustrate how to compute the half periods. ((1/2t) is the first one 

which might present some difficulty. Let a be the cycle shown in Fig. 1. The inter- 

section number of a with 71 is - 1 and with'72 is + 1. Furthermore, a has zero 

intersection with the other basis cycles. Now ~ = a71 + b72 + c51 + d52 and 

we need only compute a, b, c, and d. Using the information above concerning 

the intersection numbers of e with the basis cycles, we obtain a = b = 0 c = + 1, 

d = - 1 .  The rest is clear and is left to the reader. 

DEFINITION 6. A multiplicative function with characteristic [e ] e' on S is a two- 
t .  dl  

valued function f ,  which is meromorphic on S and is multiplied by ( - 1 )  '((-1)~, 

resp.) when analytically continued around 7i (5, respectively). 

LEMMA 7. On the Riemann surface S, with the canonical homology basis 

shown in Fig. 1, we have Table II of multiplicative functions with their charac- 

teristics and zeros and poles at the indicated branch points. 

TABLE II 

Function Characteristic Zero Pole 

: ['o:] o 

L oo x/1 - 2 ' z  [ ~ J  2t 

A2 

• oo x/1 _ 23 z [013] 23 

Moreover, 

TABLE I I I  

x/1 - 21z = 

o[lo •] (~(P), re) 

10] (~(P), n) 

0 1 
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~ / 1  - )~zz  = 

~/1 - 23z = 0[~ ~ ~ ~, 011010],0 ~,0[I 1],~,~, ~, 
PROOF. First of all we note that for these multiplicative functions we have 

more than one representation as a quotient of theta functions thus showing 

that their theta function representations are not unique. 

The multiplicative character of each of the various functions and their zeros 

and poles is obvious (Lemma 3, Treplaced by n); hence we prove only the results 

in Table III. 

The reader can easily verify that the given quotients have the proper charac- 

teristics. There remains to show, therefore, that the theta quotients have the 

proper zeros and poles and that the normalization given by the quotient of theta 

constants is correct. In this connection the reader is referred to I4] where similar 

computations are carried out. 

We are now ready to turn to the proof of Theorem 1. First of all, in the first 

equation of Table III, set P = 1/21 to find: 

which equals, using Table I, 

0[10 ~ ~] .~.1,.. 

oI~J,o,o[~](('l -lo)) 
which equals, by Lemma 4, 

o[~]~o,o[2 -lo],O, 
Opo ~ -1o],O, 

exp rci - �89 
x 

exp zi - �89 
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which equals, by Lemma 2, 

0[00 ~] (0, n)O [00 10] (0, n) 

Next, in the same equation, set P = 1/23 to find, by a computation similar to 

the one above 

~176 ~ 

To obtain 1/22 we use the extreme right hand side of the first line in Table III 

and an analysis similar to what we used for 1/21 and l/2a and we obtain 

This concludes Theorem 1. 

4. 

We are now prepared to turn to the problem of the degeneration of the Rie- 
mann surface, S. In order to define what we mean by the degeneration we will 

need some further auxiliary definitions. 

DEFINITION 7. The homogeneous Siegel modular group, Sp(g, z) of degree g, 

is the set of 2g x 2g matrices M, with integral entries satisfying 

o':] [7: 
where T denotes transpose, Og and Ig are respectively the g x g zero and unit 

matrices, and A, B, C, D are g x g matrices in the indicated positions. 

DEFINITION 8. The inhomogeneous Siegel modular group Jgg is isomorphic 

to Sp(g, 2)/{12g, --12g} and acts on C 0 by (nlj) = (An + B (Cn + D) -1 -- M.(nii), 
where (hi j) and (n~j) belong to ~g and the operations are matrix operations. 

Two matrices are said to be equivalent if they are related by an element of d/ .  g 

The elements of d/g which are congruent to the identity mod 2 are denoted by Jig. 

Let (nlj) be a given element in ~2 which is not equivalent to a diagonal matrix. 

We keep the elements nl~ and n2z fixed and allow n12 to go to zero. We restrict 
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naz by demanding that, as it goes to zero, we are at no time at a matrix which 

is equivalent to a diagonal one. That we can do this is clear. Indeed, such matrices 

have lower complex dimension than the full space, ~z .  There exist Riemann 

surfaces of genus 1 with period ratios nll and n22. Thus we associate with nx~ 

and nz2, Riemann surfaces of genus 1, S 1 and $2, respectively (see [5]). 

DEFINITION 9. We define an admissible splitting degeneration of the Riemann 

surface S, with period matrix (n~s) as follows: Let n~z tend to zero as described 

above and we obtain in the limit the two surfaces S~ and $2, that is, S has split 

into $1 and Sz. We choose in such n~z a way that it is close to zero and the three 

moveable branch points are all far away from the interval [0, 1]. 

THEOREM 2. Let S be as in Fig. 1. Let S degenerate as in Definition 9. Then 

the three branch points, 1/2j, 1/22, 1/2 a on S all tend to the same point, 1/2. 

In particular the point 

' 

~" 0 4 (0,~11) 

where 1/2 is the branch point on the surface S~, i.e., the quotient of theta con- 

stants computes the fourth branch point on S~ or one of its cross-ratios (see 

Introduction). 

PROOF. The result is clear from the remark after Definition 2 concerning the 

splitting of the theta function. Indeed, the theta functions converge absolutely 

and uniformly for matrices in ~2 and it is known [3], that on a surface of genus 2, 

no even theta vanishes. Furthermore, none of the limiting theta functions vanish 

in genus one. That the quotient of theta constants gives the formula for 1]2 

on S~ is a result which can be obtained using machinery in genus one similar 

to the computations we have produced here in genus 2. The reader can find 

those computations in [5]. 

See the proof of Theorem 3 for computations showing how to expand the 

quotients of theta constants in powers of ~12. 

REMARK. If the entries in the matrix are all pure imaginary and the degenera- 

tion is taken through purely imaginary values only, then the branch points are 

all real, given in ascending order, and tend to one another along the real axis. 

THEOREM 3. Let S be as in Fig. 1. The three branch points 1/2x, 1/~.2, 1/2 a 
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form a triangle. Let S degenerate as in Definition 9. The triangles formed by 

the three branch point vary as the points coalesce. These triangles are all 

essentially similar, that is, the angles formed by the three points are almost 

constant. 
In order to prove this theorem we need 

LEMMA 8. Let S be as described in Fig. 1. Then 

TABLE IV 

~: '0[1o~ l 0[~ ~, '011o$]0[$1o] 
.0[~ ~] 0[I I] 011 11] 0[; ~1 

23 Z ~/ 21 - 
0[00 '0] 0[~ ~]' 0[; ~] 0[00 ~]' 

o[lo:] o[Oo ~] 
Note that we suppress the dependence of the theta constants on zr. 

PROOF. In order to get the entries in Table IV we use the results from Table III, 
Lemma 7. We will compute the first entry and leave the rest to the reader. 

In the second row of Table III, on the right hand side, set P equal to 1/22. 
We obtain 

22 

From Table I, ((1/22) = [11 

x/Y•-21 _ 

22 

-11]. Substituting in the above equation, we get 

0[~11~],o,0[lo o] ([: 11] ) 
0[~o ~],o,0[I 1] ([: : ])  

which equals, by Lemma 4, 
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O['o ~ ~ 
which equals, by Lemma 2, 

011111] 0[~ 1o] 
- -  I 011o o1] 0[Oo Oo] �9 

The rest of the results in Table IV are obtained using various entries from Table 11I. 

We are now in a position to prove Theorem 3. 

Consider, for example, ((1/21) - ( 1 / 2 3 ) ) / ( ( 1 / , ~ , 1 )  - ( 1 / ) - 2 ) )  . This expression equals 

(23-21)/(22-21) x ( 2 2 / ) . 3 ) .  Using the results of Table IV we find that 

Thus, 

= X 

When 7c12 = 0 the quotient of theta constants in the last expression splits as 

follows (here we give each argument): 

~-~[10] (0, ~ ~)0 2 ~[~] (0, rc~2)0 2 [00] (0, rr~ ~)0 2 .-~[~] (0, rc22 ) O" [00] (0, rt22 ) O 2 

This final quotient equals 1/)-, the fourth branch point on the second surface 

$2 obtained in the degeneration of S. Thus, since all of the theta functions are 

analytic and not zero, we find that the differences (1/)-1)-(1/)-3) and 

(1/21)- (1/22) are related by a constant complex multiplicative factor plus 

terms which are small for ~12 small. Indeed, we may write 

1 1 1 1 02i ij02iiil 



Vol. 12, 1972 DEGENERATION OF A RIEMANN SURFACE 235 

0 ;  rool t~oj " [~176 
2 FOl I ^~ fOl 1 

[o0J o [,oJ 
+ Cln122 + C2rq24 + ...) 

where 

^,,[-003 ,,f001 ^,,F011 0,,[01] 

:,. ,,t,oj + O]OOJo. -~ o' ,,. :~tooj + ,,o., J,,'~[~]' 
C1 ~hO [7] ('~11) 0 [0} ['11) /0[0] ('22) ~kO [~] ('11) 017] ('11) i'22) 

and 

4!C z = 6C 2 + 

(tv) O0 

2 x 
0 0  z~ 

fOOl ,, FOOl 

O0 0 1 
"-b 0(IV' [00] 0Ill ( ' t  1) 0[O] (/r22)) 02 [~] (/1:22) 

01 0 + 60" r011 ,, F01"l 
_ (.,V~[oo]O[l]~.~,. [~o]~... too~O t,oj 

1 

.. ,., [~;]o[~ o[;] ~"')o.['o] ~... ) 
where all derivatives are evaluated at "12 = 0. 

Using the various entries in Table IV, we obtain all of Theorem 3. 

It is interesting to observe that in the degeneration given by Definition 9, 

we have the limiting value to which the three branch points tend is a point which 

depends only on "11, i.e., is related to the first limiting surface, while the angles 

between the three branch points depend on ~2~, i.e., only the second limiting 

surface. 

5. The second limiting surface 

Consider the conformal map z' = az + b, where a = 2122/(21 - 22) and b = - a/A 1. 

This map takes 1/), 1 to 0' = (1/2~)', 1/)` 2 to 1' = (1/22)' and 1/~. 3 to 
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[21 --22J 23J 
These three points together with oo are the branch points on the second Riemann 

surface, $2. 

Let S degenerate as in Definition 9. The branch points 0 and 1, of S,  go off 

to oo under the conformal map, that is, 0, 1 and oo coalesce, while (1/).3)' be- 

comes, using Table IV, 

04 [00] (0, ~22) 

04110] (0, ~22) 

The bounding cycle on S which separates S 1 and S 2 is the cycle surrounding 

the three "moveable" branch points, 1/21, li22, 1/23. 
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